HTRC Feature Reader 2.0

I’ve released an overhaul of the HTRC Feature Reader, a Python library that makes it easy to work with the Extracted Features (EF) dataset from the HathiTrust. EF provides page-level feature counts for 4.8 million volumes, including part-of-speech tagged term counts, line and sentence counts, and counts of which characters occur in the far right and left sides of the text. The Feature Reader provides easy parsing of the dataset format and in-memory access to different views of the features. This new version works in service of the SciPy stack of data analysis tool – particularly Pandas. I’ve also transferred the code to the HathiTrust Research Center organization, and it is the first version that can be installed by pip:

pip install htrc-feature-reader

If you want to jump into using the HTRC Feature Reader, the README walks you through the classes and their methods, the documentation provides more low-level detail, and the examples folder features Jupyter notebooks with various small tutorials. One such example is how to plot sentiment in the style of Jockers’s plot arcs. The focus of this post is explaining the new version of the Feature Reader.

download (4).png
Chart from the Within Books Sentiment Trends tutorial

Continue reading “HTRC Feature Reader 2.0”